
 
 
 
 
 
Economic Computation and Economic Cybernetics Studies and Research, Issue 1/2019; Vol. 53 

_____________________________________________________________ 

39 

DOI: 10.24818/18423264/53.1.19.03   

 

 

 

 

Professor Florentino DOMINGUEZ, MsC 

E-mail: fdominguezv@esfm.ipn.mx 

Instituto Politécnico Nacional 

Professor Julio B. CLEMPNER, PhD 

E-mail:  julio@clempner.name 

Instituto Politécnico Nacional 

 

MULTIPERIOD MEAN-VARIANCE CUSTOMER CONSTRAINED 

PORTFOLIO OPTIMIZATION FOR FINITE DISCRETE-TIME 

MARKOV CHAINS 
 
Abstract. The multi-period formulation aims at selecting an optimal investment 

strategy in a time-horizon able to maximize the final wealth while minimize the risk and 

determine the exit time. This paper is dedicated to solve the multi-period mean-variance 
customer constrained Markowitz’s portfolio optimization problem employing the 

extraproximal method restricted to a finite discrete time, ergodic and controllable Markov 

chains for finite time horizon. The extraproximal method can be considered as a natural 
generalization of the convex programming approximation methods that largely simplifies 

the mathematical analysis and the economic interpretation of such model settings. We show 

that the multi-period mean-variance optimal portfolio can be decomposed in terms of 
coupled nonlinear programming problems implementing the Lagrange principle, each 

having a clear economic interpretation. This decomposition is a multi-period representation 

of single-period mean variance customer portfolio which naturally extends the basic 

economic intuition of the static Markowitz’s model (where the investment horizon is 

practically never known at the beginning of initial investment decisions). This implies that 
the corresponding multi-period mean-variance customer portfolio is determined for a 

system of equations in proximal format. Each equation in this system is an optimization 
mean-variance problem which is solved using an iterating projection gradient method. 

Iterating these steps, we obtain a new quick procedure which leads to a simple and logically 

justified computational realization: at each iteration of the extraproximal method the 
functional of the mean-variance portfolio converges to an equilibrium point. We provide 

conditions for the existence of a unique solution to the portfolio problem by employing a 

regularized Lagrange function. We present the convergence proof of the method and all the 
details needed to implement the extraproximal method in an efficient and numerically stable 

way. Empirical results are finally provided to illustrate the suitability and practical 
performance of the model and the derived explicit portfolio strategy. 

Keywords:Multi-period portfolio  extraproximal method  Markov Chains  

optimization  regularization. 
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1.Introduction 

1.1.Brief review 

Portfolio selection is the problem of allocating given assets to securities drawn 

from a designated pool of securities for the purpose of maximizing portfolio return. The 

mean-variance analysis founded by [15] provides the fundamental basis for dealing with 

portfolio selection in single periods: a) mean refers to the endeavor to maximize the 

expected return of the portfolio return random variable, and b) variance, which is 

Markowitz’s measure for risk, refers to the endeavor to minimize the variance of the 

portfolio return random variable. Some of its drawbacks are well known: the original 

Markowitz’s formulation aims at selecting a single portfolio. This approach presents 

serious difficulties. However, the multi-period portfolio goal is to find an optimal 

investment strategy in a time-horizon T  selecting a set of intermediate portfolios 

instead of just one as originally proposed by Markowitz. The multi-period portfolio 

problem typically involves the expected return U , a negative quadratic risk term V  

(variance) and constraints at time period𝑛 = 1,2, . . . , 𝑇. Let 𝑐𝑛 ∈ 𝐶𝑎𝑑𝑚 ⊂ ℝ𝑛 denote 

the holdings of a portfolio of N  assets at time period𝑛 = 1,2, . . . , 𝑇. The entry (𝑐𝑛)𝑖 
denotes the amount of asset i  held in period n , considered as a real number indicating 

a short position. The initial portfolio 𝑐0 is given, then the multi-period portfolio goal is 

to find 𝑐1, . . . , 𝑐𝑇 maximize the final wealth while minimize the risk and determine the 

exit time. The variables in the multi-period portfolio problem are the sequence of 

positions 𝑐1, . . . , 𝑐𝑇 . We may also include additional constraints, such as “budget” 

constraint where 𝑐𝑛 represents the portfolio fractions invested in each asset. We refer to 

the solution of the problem 

𝛷 = 𝐸 {𝑈(𝑐𝑛) −
𝜉

2
𝑉(𝑐𝑛)} → 𝑚𝑎𝑥 𝑐 ,  subject to 𝑐 ≥ 0, 1𝑇𝑐 = 1 

where 𝜉 > 0 is the risk aversion factor. 

Merton’s seminal work [16] proposed an analytical expression of the 

mean-variance efficient frontier in single-period portfolio selection. As a result, the 

mean-variance formulation motivates the development of extensions leading to several 

streams of research. One stream is on extending the original mean-variance single 

period model to a multi-period approach. Li and Ng [14] were the first in considering an 

analytical optimal solution to the mean-variance formulation in multi-period portfolio 

selection and proposed an algorithm for finding an optimal portfolio policy. Guo and Hu 

[12] studied the multi-period mean-variance portfolio optimization problem when exit 

time is uncertain. Zhu et al. [25] proposed a multi-period mean-variance model by 

incorporating a control of the probability of bankruptcy at each period. For different 

approaches to tackle the problem (see [13, 20]) 

There are many studies reported in the literature which try to efficiently or 

analytically solve the multi-period portfolio problem for Markov chains. Cakmak and 
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Ozekici [4] considered a multi-period mean-variance model where the model 

parameters change according to a stochastic market employing a similar solution 

technique used in [14] and [25] to obtain an explicit expression for the portfolio efficient 

frontier. They suggested that the mean vector and covariance matrix of the random 

returns of risky assets all depend on the state of the market during any period where the 

market process is assumed to follow a Markov chain. This work was improved in [5] 

considering several multi-period portfolio optimization models where the market 

consists of a riskless asset and several risky assets. An important feature of the improved 

model is that the stochastic evolution of the market is described by a Markov chain with 

perfectly observable states. Wei and Ye [21] suggested a multi-period mean-variance 

portfolio selection model imposed by a bankruptcy constraint in a stochastic market 

where the random returns of risky assets all depend on the state of the stochastic market, 

which is assumed to follow a Markov chain. Costa and Araujo [11] proposed a 

generalized multi-period mean-variance portfolio selection problem with the market 

parameters subject to Markov random regime switching to better respond to drastic 

movements of the security market. They suggested the necessary and sufficient 

conditions for obtaining an optimal control policy for this Markovian generalized 

multi-period mean-variance model, based on a recursive procedure. Wu and Li [22] 

investigated a multi-period mean-variance portfolio selection with regime switching and 

uncertain exit time where the returns of assets all depend on the states of the stochastic 

market which are assumed to follow a finite homogeneous Markov chain. Wu and Li 

[23] studied a non-self-financing portfolio optimization problem under the framework 

of multi-period mean–variance with Markov regime switching and a stochastic cash 

flow. Yao et al. [24] considered an uncertain exit time multi-period mean–variance 

portfolio selection problem with endogenous liabilities in a Markov jump market, where 

assets and liabilities of the balance sheet are simultaneously optimized. Chen et al. [6] 

develop an investment model with time consistency in Markovian markets involving a 

nested conditional expectation mapping and examined the differences of the investment 

policies with a riskless asset from those without a riskless asset. Bannister et al. [3] 

studied a multi-period portfolio selection problem in which a single period 

mean-standard-deviation criterion is used to construct a separable multi-period selection 

criterion obtaining a closed form optimal strategy which depends on selection schemes 

of investor’s risk preference. Clempner and Poznyak [8] considered the subject of 

penalty regularized expected utilities and investigates the applicability of the method for 

computing the mean-variance Markowitz customer portfolio optimization problem. 

1.2.Main results 

We consider the modeling and solution of the multi-period mean-variance 

customer constrained Markowitz’s portfolio optimization problem in Markov chains. 

The proposed multi-period mean-variance model pioneered by [19, 18, 1] provides a 



 

 

 

 

 

 

Florentino Domiguez, Julio B. Clempner 

_____________________________________________________________________ 

42 

 

 

 

solution method able to find an optimal investment strategy in a finite time-horizon 

which to maximize the final wealth while minimize the risk and determine the exit time. 

For solving the problem, we present a two-step iterated procedure for the extraproximal 

method: a) the first step (the extra-proximal step) consists of a “prediction” which 

calculate the preliminary position approximation to the equilibrium point, and b) the 

second step is designed to find a “basic adjustment” of the previous prediction. The first 

step computes the direction of the future evolution at a given point and, the second step 

makes the proximal step from the same point along the predicted direction. In this sense, 

the prediction step can be conceptualized as a feed-back for the simplest proximal 

approach. Each equation in this system is an optimization mean-variance problem which 

is solved using an iterating projected gradient method. This research presents the 

following main contributions: 
• We employ the extraproximal method to find analytically the optimal policy of the 

multi-period mean-variance customer constrained Markowitz’s portfolio problem 

formulation for finite, homogeneous, ergodic and controllable Markov chains. The 

states of Markov chain are interpreted as the states of an economy. 

• The extraproximal method simplifies the mathematical analysis and the economic 

interpretation of the Makovitz’s model: the multi-period mean-variance optimal 

portfolio formulation can be decomposed in terms of coupled nonlinear 

programming problems implementing the Lagrange principle, each having a clear 

economic interpretation. 

• The multi-period representation naturally extends the basic economic intuition of 

the static Markowitz’s model for a single-period mean variance customer portfolio. 

• We present a two-step iterated procedure for solving the extraproximal method: a) 

the first step (the extra-proximal step) consists of a “prediction” which calculate the 

preliminary position approximation to the equilibrium point, and b) the second step 

is designed to find a “basic adjustment” of the previous prediction. 

• Each equation in this system is an optimization mean-variance problem which is 

solved using an iterating projection gradient method. The algorithm finds the 

optimal multi-period portfolio policy that maximize the expected utility value and 

the variance of the terminal wealth. 

• We also present the convergence proof of the method. 

• We provide conditions for the existence of a unique solution to the portfolio 

problem by employing a regularized Lagrange function. 

• We present all the details needed to implement the extraproximal method. 

• A numerical example illustrates the usefulness of our proposed method for 

multi-period mean-variance customer portfolio. 
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1.3.Organization of the paper 

The rest of the paper is organized as follows. Section 2 introduces the main 

concepts related to homogeneous Markov chains needed to understand the rest of the 

paper. Section 3 derives an explicit solution for the multi-period Markowitz’s portfolio 

optimization presenting the extraproximal method in terms of a coupled nonlinear 

programming problems implemented using the Lagrange principle. Section 4 presents 

the convergence analysis of the portfolio method. Section 5 illustrates the usefulness of 

our proposed method for multi-period mean-variance customer portfolio by discussing 

specific issued in a numerical example. Section 6 concludes and presents future work. 

 

2.Homogeneous Markov chains model 

Let us define a probability space(Ω, ℱ, 𝑃) where 𝛺  is a set of elementary 

events,F is the minimal 𝜎 −algebra of the subsets of 𝛺, and P is a given probabilistic 

measure defined for any𝒜 ∈ ℱ. Let us also consider the natural sequence 𝑛 = 1,2, . .. as 

a time argument. Let 𝑆 be a finite set consisting of states {𝑠1, … , 𝑠𝑛}, 𝑛 ∈ ℕ, called the 

state space. A Stationary Markov chain [17, 7] is a sequence of 𝑆-valued random 

variables 𝑠(𝑛), 𝑛 ∈ ℕ, satisfying the Markov condition: 

𝑃(𝑠(𝑛 + 1) = 𝑠𝑗|𝑠(𝑛) = 𝑠𝑖𝑛 , … , 𝑠(1) = 𝑠𝑖1) = 𝑃(𝑠(𝑛 + 1) = 𝑠𝑗|𝑠(𝑛) = 𝑠𝑖) =: 𝜋𝑖𝑗. 

The random variables )(ns  are defined on the probability space(Ω, ℱ, 𝑃) and take 

values in S . The Markov chain can be represented by a complete graph whose nodes 

are the states, where each edge (𝑠𝑖, 𝑠𝑗) ∈ 𝑆
2 is labeled by the transition probability. The 

matrix 𝛱 = (𝜋𝑖𝑗)(𝑠𝑖,𝑠𝑗)∈𝑆 ∈ [0,1]
𝑁×𝑁 determines the evolution of the chain: for each 

𝑛 ∈ ℕ, the power 
n  has in each entry (𝑠𝑖, 𝑠𝑗) the probability of going from state 𝑠𝑖 

to state 𝑠𝑗 in exactlyn steps. 

Definition 1.A controllable finite homogeneous Markov chain ([17]) is a 

4-tuple  

𝑀𝐶 = {𝑆, 𝐴,𝒦,𝛱} (1) 

where: 

• S  is a finite set of states. 

• A  is the set of actions, which is a metric space. For each 𝑠 ∈ 𝑆, 𝐴(𝑠) ⊂ 𝐴 is the 

non-empty set of admissible actions at state Ss . Without loss of generality we 

may take 𝐴 =∪𝑠∈𝑆 𝐴(𝑠); 
• 𝒦 = {(𝑠, 𝑎)|𝑠 ∈ 𝑆, 𝑎 ∈ 𝐴(𝑠)} is the set of admissible state-action pairs, which is 

a finite subset of 𝑆 × 𝐴; 

• 𝛱 = [𝜋𝑗|𝑖𝑘] is a controlled transition matrix, where 
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𝜋𝑗|𝑖𝑘 ≡ 𝑃(𝑠(𝑛 + 1) = 𝑠𝑗|𝑠(𝑛) = 𝑠𝑖, 𝑎(𝑛) = 𝑎𝑘) 

represents the probability associated with the transition from state 𝑠𝑖 to state 𝑠𝑗 under 

an action 𝑎𝑘 ∈ 𝐴(𝑠𝑖), 𝑘 = 1,… ,𝑀, 𝑀 ∈ ℕ.  

Definition 2.A Markov Decision Process is a pair  

𝑀𝐷𝑃 = {𝑀𝐶,𝑈} (2) 

where: 

• MC is a controllable Markov chain (1) 

• 𝑈: 𝑆 × 𝒦 → ℝ is a utility function, associating to each state a real value. 

 

The Markov property of the decision process in (2) is said to be fulfilled if  

 𝑃(𝑠(𝑛 + 1)|(𝑠(1), … , 𝑠(𝑛 − 1)), 𝑠(𝑛), 𝑎(𝑛)) = 𝑃(𝑠(𝑛 + 1) = 𝑠𝑗|𝑠(𝑛) = 𝑠𝑖 , 𝑎(𝑛) =

𝑎𝑘). 

A sequence of random stochastic matrices 𝐷 = {𝑑𝑘|𝑖(𝑛)}𝑘=1,𝑀,𝑖=1,𝑁
 is said to 

be a randomized control strategy if:a) it is causal (independent on the future), that is, 

𝑑𝑘|𝑖(𝑛) = [𝑑𝑘|𝑖(𝑛)]𝑘=1,𝑀;𝑖=1,𝑁
 is ℱ𝑛−1-measurable where ℱ𝑛−1 ≔

𝜎(𝑠(1), 𝑎(1), 𝑑(1); … ; 𝑠(𝑛 − 1), 𝑎(𝑛 − 1), 𝑑(𝑛 − 1))is the 𝜎 −algebra generated by 

1))(1),(1),((1);...;(1),(1),( −−− ndnansdas ; b) the random variables 

1))((1),...,( −naa  represent the “realizations” of the control actions, taking values on 

the finite set 𝐴 = {𝑎1, . . . , 𝑎𝑀} and satisfy the following property 

𝑑𝑘|𝑖(𝑛) = 𝑃(𝑎(𝑛) = 𝑎𝑘|𝑠(𝑛) = 𝑠𝑖 ∧ ℱ𝑛−1 (3) 

which represents the probability measure associated with the occurrence of an action 

𝑎(𝑛) from state 𝑠(𝑛) = 𝑠𝑖. 
Denote by 𝛴 the class of all randomized strategies 𝐷, that is, 

𝛴 = {𝑑𝑘|𝑖(𝑛)} 

Considering Eq. (3) for any fixed strategy 𝐷 = {𝑑𝑘|𝑖(𝑛)} ∈ 𝛴 the conditional 

transition probability matrix 𝛱(𝑑𝑘|𝑖(𝑛)) can be defined as follows 

𝛱(𝑑𝑘|𝑖(𝑛)) = 𝑃(𝑠(𝑛 + 1) = 𝑠𝑗|𝑠(𝑛) = 𝑠𝑖) = ∑ 𝑃(𝑠(𝑛 + 1) = 𝑠𝑗|𝑠(𝑛) =
𝑀
𝑘=1

𝑠𝑖, 𝑎(𝑛) = 𝑎𝑘)𝑑𝑘|𝑖(𝑛)which represents the probability to move from the states 𝑠𝑗 to 

the state is  under the applied mixed strategy 𝑑𝑘|𝑖(𝑛). 

In the case of complete information on the payoff and transition matrices, the 

dynamics of the Markov chain is described as follows. The dynamics begins at the initial 

state (0)s  which (as well as the states further realized by the process) is assumed to be 

completely measurable. Each strategy is allowed to randomize, with distribution 

𝑑𝑘|𝑖(𝑛) , over the pure action choices 𝑎𝑘 ∈ 𝐴(𝑠𝑖), 𝑖 = 1,𝑁  and 𝑘 = 1,𝑀 . These 

choices induce immediate utilities U . The system tries to maximize the corresponding 
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one-step utility. Next, the system moves to new state 𝑠(𝑛 + 1) = 𝑠𝑗 according to the 

transition probabilities 𝛱(𝑑𝑘|𝑖(𝑛)). Based on the obtained utility, the systems adapt it 

mixed strategy computing 𝑑𝑘|𝑖(𝑛 + 1) for the next selection of the control actions. In 

addition, these choices induce the state distribution dynamics as follows  

𝑃(𝑠(𝑛 + 1) = 𝑠𝑗) =∑(∑𝜋𝑗|𝑖𝑘𝑑𝑘|𝑖

𝑀

𝑘=1

)𝑃(𝑠(𝑛) = 𝑠𝑖)

𝑁

𝑖=1

. 

Considering ergodic Markov chains [7], for any fixed collection of stationary 

strategies 𝑑𝑘|𝑖(𝑛) = 𝑑𝑘|𝑖  we have 𝑃(𝑠(𝑛 + 1) = 𝑠𝑗) → 𝑃(𝑠 = 𝑠𝑗), 𝑛 → ∞, that is, in 

the ergodic case when the Markov chain is ergodic for any stationary strategy 𝑑𝑘|𝑖 the 

distributions 𝑃(𝑠(𝑛 + 1) = 𝑠𝑗)  exponentially fast converge to their limits 𝑃(𝑠𝑖) 

satisfying 

𝑃(𝑠𝑗) =∑(∑𝜋𝑗|𝑖𝑘𝑑𝑘|𝑖

𝑀

𝑘=1

)𝑃(𝑠𝑖)

𝑁

𝑖=1

. 
 

(4) 

Obviously, 𝑃(𝑠𝑗) is a function of 𝑑𝑘|𝑖 . The utility function is given by the 

values 𝑊𝑖𝑘, so that the “average utility function” U  in the stationary regime can be 

expressed as 

𝑼(𝑑(𝑘|𝑖)):=∑𝑊𝑖𝑘𝑑𝑘|𝑖𝑃(𝑠𝑖)

𝑖,𝑘

 (5) 

where𝑊𝑖𝑘 = ∑ 𝑈𝑖𝑗𝑘𝜋𝑗|𝑖𝑘𝑗 . 

The change of variable, suggested below, significantly simplifies the 

representation of the payoff functions converting implicit nonlinear function 𝑼(𝑑𝑘|𝑖) in 

to a polylinear one. To do so, let us introduce a matrix of elements 𝑐:= [𝑐𝑖|𝑘]𝑖=1,𝑁;𝑘=1,𝑀
 

according to the following formula:  

𝑐𝑖|𝑘 = 𝑑𝑘|𝑖𝑃(𝑠𝑖) (6) 

The admissible strategies (𝑐𝑖|𝑘 ∈ 𝐶𝑎𝑑𝑚) will be limited by the following requirements: 

• each matrix 𝑐𝑖|𝑘 represents a stationary mixed strategy, and, hence, belongs to the 

simplex 𝛥𝑀𝑁 defined by 

𝛥𝑀𝑁 = {𝑐𝑖|𝑘 ∈ ℝ
𝑀𝑁 |∑𝑐𝑖|𝑘 = 1, 𝑐𝑖|𝑘 ≥ 0

𝑖,𝑘

} 
(7) 

• the joint strategy variable 𝑐𝑖|𝑘 satisfies the “ergodicity constraints” (4) and, hence, 

belongs to the convex, closed and bounded set  
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ℰ = {𝑐𝑖|𝑘 ∈ ℝ
𝑀𝑁|∑𝑐𝑗|𝑘

𝑘

=∑𝜋𝑗|𝑖𝑘𝑐𝑖|𝑘
𝑖,𝑘

} ,∑𝑐𝑖|𝑘
𝑘

> 0 
(8) 

Then, 𝑐𝑖|𝑘 ∈ 𝒞𝑎𝑑𝑚 ≔ Δ𝑀𝑁 × ℰ. Notice that by (6) it follows that  

𝑃(𝑠𝑖) =∑𝑐𝑖|𝑘
𝑘

𝑑(𝑘|𝑖) =
𝑐𝑖|𝑘
∑ 𝑐𝑖|𝑘𝑘

. 
(9) 

In terms of 𝑐-variables the utility function U becomes: 𝑼(𝑐𝑖|𝑘) = ∑ ∑ 𝑊𝑖𝑘𝑐𝑖|𝑘
𝑀
𝑘=1

𝑁
𝑖=1 . 

3.Multi-period Markowitz’s portfolio optimization 

The original Markowitz’s formulation aims at selecting a single portfolio where 

the investment horizon is practically never known at the beginning of initial investment 

decisions. The multi-period portfolio goal is to find an optimal investment strategy in a 

time-horizon able to maximize the final wealth while minimize the risk and determine 

the exit time. 

3.1.Single period optimization 

One may formally state Markowitz’s decision model for mean-variance 

customer portfolio as follows [19, 18, 1]. We define ),( cU   as the wealth available 

for investment 

𝑼(𝛼, 𝑐): =∑𝑊𝑖𝑘𝛼𝑘|𝑖𝑐𝑘|𝑖 →

𝑖,𝑘

𝑚𝑎𝑥𝛼∈𝐴𝑎𝑑𝑚,𝑐∈𝒞𝑎𝑑𝑚  

where 𝑊𝑖𝑘: = ∑ 𝑈𝑖𝑗𝑘𝜋𝑗|𝑖𝑘
𝑁
𝑗=1  and 𝑐𝑖|𝑘: = 𝑑𝑘|𝑖𝑃(𝑠𝑖).and the variance (Var(𝛼, 𝑐)) as  

Var(𝛼, 𝑐):=∑[𝛼𝑘|𝑖𝑊𝑖𝑘 −𝑼(𝛼, 𝑐)]
2
𝑐𝑘|𝑖 =∑𝛼𝑘|𝑖

2𝑊𝑖𝑘
2𝑐𝑘|𝑖 −𝑼(𝛼, 𝑐)

2

𝑖,𝑘𝑖,𝑘

→𝑚𝑎𝑥𝛼∈𝐴𝑎𝑑𝑚,𝑐∈𝒞𝑎𝑑𝑚 

 

The resulting customer portfolio optimization problem includes a model-user’s 

tolerance for risk, and it is represented by the following expression: 

Φ(𝛼, 𝑐) ≔ 𝑼(𝛼, 𝑐) −
𝜉

2
Var(𝛼, 𝑐) → 𝑚𝑎𝑥𝛼∈𝐴𝑎𝑑𝑚,𝑐∈𝒞𝑎𝑑𝑚 

 
(10) 

and 
𝜉

2
 is the risk-aversion parameter. 

3.2.Multi-period portfolio 

We define 𝑼(𝑑(𝑘|𝑖)(𝑛)) as the wealth available for investment and 𝑑𝑘|𝑖(𝑛) as 

the amounts invested in the risky assets at time 𝑛 (𝑛 = 1,2, . . . , 𝑇). A policy {𝑑(𝑛)}𝑛≥0 

maximizes the conditional mathematical expectation of the utility function 𝑈(𝑑𝑘|𝑖(𝑛)) 

under the condition that the history of the process  

ℱ𝑛 ≔ {𝐷0, 𝑃{𝑠0 = 𝑠𝑗}𝑗=1,𝑁̅̅ ̅̅ ̅;… ; 𝐷𝑛−1, 𝑃{𝑠𝑛 = 𝑠𝑗}𝑗=1,𝑁̅̅ ̅̅ ̅} 

is fixed and cannot be changed hereafter, i.e., it realizes the conditional optimization rule 
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𝑑(𝑛) = 𝑎𝑟𝑔𝑚𝑎𝑥𝑑(𝑛)∈𝐷𝐸 {𝑼(𝑑(𝑘|𝑖)) |ℱ𝑛} 
(11) 

where 𝑼(𝑑𝑘|𝑖(𝑛)) is the utility function at the state 𝑠(𝑛) and where 𝐸{∙} denotes the 

expectation of “ ”. Then, the wealth dynamics is given by the values 𝑼(𝑑𝑘|𝑖(𝑛)), so 

that the “average utility function” U for the multi-period portfolio can be expressed as 

𝑼(𝑑𝑘|𝑖(𝑛)):=∑𝑊𝑖𝑘𝑑𝑘|𝑖(𝑛)𝑃(𝑠𝑖)

𝑖,𝑘

 (12) 

where 𝑊𝑖𝑘 = ∑ 𝑈𝑖𝑗𝑘𝜋𝑗|𝑖𝑘𝑗 . 

The investor wants to find an optimal investment strategy in a finite 

time-horizon to maximize his/her final wealth while minimize his/her risk. Then, we 

formulate the multi-period portfolio selection problem as follows. We consider 

diversification with respect to the number of customers chosen in the portfolio problem. 

Then, 𝛼𝑖|𝑘(𝑛) is the number of customers at state i  applying action k , 0 ≤ 𝛼𝑖|𝑘(𝑛). 

The utility U of a customer portfolio is calculated as the sum of the weighted net 

presenting the value u  as follows 

𝑼(𝛼(𝑛), 𝑐(𝑛)): =∑𝑊𝑖𝑘𝛼𝑘|𝑖(𝑛)𝑐𝑘|𝑖(𝑛) →

𝑖,𝑘

𝑚𝑎𝑥𝛼∈𝐴𝑎𝑑𝑚,𝑐∈𝒞𝑎𝑑𝑚 

where  𝑊𝑖𝑘: = ∑ 𝑈𝑖𝑗𝑘𝜋𝑗|𝑖𝑘
𝑁
𝑗=1  and 𝑐𝑖|𝑘(𝑛):= 𝑑𝑘|𝑖(𝑛)𝑃(𝑠𝑖). 

The customer portfolio optimization problem [15] attempts to maximize the mean value 

(𝑈(𝛼(𝑛), 𝑐(𝑛)) ) generated by all the customers while minimizing the variance 

(Var(𝑈(𝛼(𝑛), 𝑐(𝑛))))  

Var(𝛼(𝑛), 𝑐(𝑛)):

=∑[𝛼𝑘|𝑖(𝑛)𝑊𝑖𝑘 −𝑼(𝛼(𝑛), 𝑐(𝑛))]
2
𝑐𝑘|𝑖

𝑖,𝑘

=∑𝛼𝑘|𝑖
2(𝑛)𝑊𝑖𝑘

2𝑐𝑘|𝑖(𝑛) − 𝑼(𝛼(𝑛), 𝑐(𝑛))
2

𝑖,𝑘

→𝑚𝑎𝑥𝛼∈𝐴𝑎𝑑𝑚,𝑐∈𝒞𝑎𝑑𝑚 

 

For practical purposes, the resulting customer portfolio optimization problem includes a 

model-user’s tolerance for risk, and it is represented as follows:  

Φ(𝛼(𝑛), 𝑐(𝑛)) ≔ 𝑼(𝛼(𝑛), 𝑐(𝑛)) −
𝜉

2
Var(𝛼(𝑛), 𝑐(𝑛))

→ 𝑚𝑎𝑥𝛼∈𝐴𝑎𝑑𝑚,𝑐∈𝒞𝑎𝑑𝑚  

 
(13) 

where  
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𝐴𝑎𝑑𝑚 =

{
 
 

 
 𝛼 = [𝛼𝑖|𝑘(𝑛)]𝑖=1,𝑁,𝑘=1,𝑀 : ∑∑𝛼𝑖|𝑘(𝑛) ≤ 𝛼

+

𝑀

𝑘=1

𝑁

𝑖=1

,

𝛼𝑖|𝑘(𝑛) ∈ [𝜀, 𝛼
+],  𝜀 > 0

 

 
(14) 

The variable 0>  is introduced for avoiding divisions by 0. 
+  denotes de 

maximum number of clients. 

Because, the purpose is to obtain a higher mean value return (𝑼(𝛼(𝑛), 𝑐(𝑛))) 
also the corresponding risk level (Var(𝛼(𝑛), 𝑐(𝑛)) increases. Here the goal is to find the 

values of 𝛼(𝑛) and 𝑐(𝑛) that maximize the objective function in Eq. (13) subject to the 

following constrains: 

∑∑𝛼𝑖|𝑘(𝑛)𝑐𝑖|𝑘(𝑛)𝜂𝑖|𝑘 ≤ 𝑏𝑖𝑛𝑒𝑞

𝑀

𝑘=1

𝑁

𝑖=1

 
(15) 

where 𝜂𝑖|𝑘 are the resources destined for carrying out in state i  a promotion k and the 

admissible sets are as in Eq. (7), Eq. (8). The following optimization properties are the 

key to find efficient portfolios: a) the Markowitz model in Eq. (13) is a quadratic 

optimization problem (quadratic objective function and linear constraints in Eq. (15), 

Eqs. (7)-(8) and Eq. (14)), b) the feasibility set 𝐶𝑎𝑑𝑚  is convex since it is the 

intersection of hyperplanes, c) the factor 1/2 of the risk-aversion parameter ξ is chosen 

for notational convenience and, d) the parameter 𝑏𝑖𝑛𝑒𝑞  is endogenously given (the 

budget is chosen by the decision maker in the respective model). The mean-variance 

Markowitz’s portfolio is given by: 

 

 

( )( )L
, 0 1 1

( ), ( ), , , :=
N

c n n
 

    
+

𝜃 [∑ ∑ 𝑊𝑖𝑘𝛼𝑖|𝑘(𝑛)𝑐𝑖|𝑘(𝑛)
𝑀
𝑘=1

𝑁
𝑖=1 +

𝜉

2
∑ ∑ 𝑊𝑖𝑘𝛼𝑖|𝑘(𝑛)𝑐𝑖|𝑘(𝑛)

𝑀
𝑘=1

𝑁
𝑖=1 ∑ ∑ 𝑊𝑖̂𝑘̂𝛼𝑖|𝑘̂(𝑛)𝑐𝑖̂|𝑘̂(𝑛)

𝑀
𝑘̂=1

𝑁
𝑖̂=1 −

𝜉

2
∑ ∑𝑀𝑘=1
𝑁
𝑖=1 𝑊𝑖𝑘

2𝛼𝑖|𝑘
2 (𝑛)𝑐𝑖|𝑘(𝑛)] −

∑ 𝜆0,𝑗
𝑁
𝑗=1 [(∑ ∑ 𝜋𝑗|𝑖𝑘𝑐𝑖|𝑘(𝑛)

𝑀
𝑘=1

𝑁
𝑖=1 − ∑ 𝑐𝑗|𝑘(𝑛)

𝑀
𝑘=1 ) − 𝑏𝑒𝑞,𝑗] − 

𝜆𝑁+1 (∑∑𝑐𝑖|𝑘(𝑛) − 𝑏𝑒𝑞,𝑁+1

𝑀

𝑘=1

𝑁

𝑖=1

) − 𝜆1 (∑∑𝛼𝑖|𝑘(𝑛)𝑐𝑖|𝑘(𝑛)𝜂𝑖|𝑘 − 𝑏𝑖𝑛𝑒𝑞

𝑀

𝑘=1

𝑁

𝑖=1

) 

+
𝛿

2
(−‖𝑐(𝑛)‖2 − ‖𝛼(𝑛)‖2 + ‖𝜆0‖

2 + 𝜆𝑁+1
2 + ‖𝜆1‖

2) 

 

 

 

 

 

 
(16) 

The proximal regularization terms 𝜃 and 𝛿, for the Markowitz’s Regularized 

Portfolio Lagrange function (RPLF)[10, 9], can be viewed as an additional quadratic 

risk and expected return for each asset that ensures the convergence to a unique 

portfolio. 
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3.3.Multi-period portfolio optimization method 

The initial portfolio 𝑐0 and initial number of clients𝛼0 are given. The goal is to 

find the portfolio 𝑐∗ which maximizes the utility and minimizes the variance and the 

optimal number of 𝛼∗. We also include additional constraints related to the Markov 

restrictions and the number of clients of the mean-variance portfolio. The Lagrangian of 

mean-variance Markowitz portfolio is given in Eq. (16) byℒ(𝑐, 𝛼, 𝜆). For computing the 

multi-period portfolio optimization problem, we employ the extraproximal method 

following iterative formulas [2] given by: 

First half-step (prediction) 

 

𝜆̅𝑛 = 𝑎𝑟𝑔𝑚𝑖𝑛𝜆≥0 {
1

2
‖𝜆 − 𝜆𝑛‖

2 + 𝛾ℒ(𝑐𝑛, 𝛼𝑛, 𝜆)}

𝑐𝑛̅ = 𝑎𝑟𝑔𝑚𝑎𝑥𝑐∈𝒞𝑎𝑑𝑚 {−
1

2
‖𝑐 − 𝑐𝑛‖

2 + 𝛾ℒ(𝑐, 𝛼𝑛, 𝜆̅𝑛)}

𝛼̅𝑛 = 𝑎𝑟𝑔𝑚𝑎𝑥𝛼∈𝐴𝑎𝑑𝑚 {−
1

2
‖𝛼 − 𝛼𝑛‖

2 + 𝛾ℒ(𝑐𝑛, 𝛼, 𝜆̅𝑛)}

 

 

 
(17) 

 

Second half-step (approximation): 

𝜆𝑛+1 = 𝑎𝑟𝑔𝑚𝑖𝑛𝜆≥0 {
1

2
‖𝜆 − 𝜆𝑛‖

2 + 𝛾ℒ(𝑐𝑛̅, 𝛼̅𝑛, 𝜆)}

𝑐𝑛+1 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑐∈𝒞𝑎𝑑𝑚 {−
1

2
‖𝑐 − 𝑐𝑛‖

2 + 𝛾ℒ(𝑐, 𝛼̅𝑛, 𝜆̅𝑛)}

𝛼𝑛+1 = 𝑎𝑟𝑔𝑚𝑎𝑥𝛼∈𝐴𝑎𝑑𝑚 {−
1

2
‖𝛼 − 𝛼𝑛‖

2 + 𝛾ℒ(𝑐𝑛̅, 𝛼, 𝜆̅𝑛)}

 

 

 
(18) 

 

Each iteration of formulas presented in Eq. (17) and Eq. (18) has a natural 

interpretation and involves three nonlinear equations, corresponding to evaluation of the 

three extraproximal operators. Evaluating the extraproximal Eq. (17) and Eq. (18) of the 

objective involves solving three related optimization problems, one for each possible 

sequence of outcomes. The first step computes the direction of the future evolution of 

the portfolio at a given point and, the second step makes the proximal step from the same 

point along the predicted direction of the portfolio. In this sense, the prediction step can 

be conceptualized as a feed-back for the simplest proximal approach of the portfolio. 

 

Remark 3.The regularization term can be viewed as an additional quadratic 

risk and expected return for each asset.  
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4.Convergence analysis of the portfolio method 

The convergence of any process and the estimation of the rate of convergence 

depend on the behavior of the objective function given in Eq.(13) in the neighborhood of 

the solution of the problem. 

Given 𝑐 = (𝑥,𝑤) let us define the extended variables 

𝑥̃: = (𝑥) ∈ 𝑋̃:= 𝑋, 𝑦̃: = (𝑤, 𝜆)𝑇 ∈ 𝑌̃:= 𝑊 ×ℝ+, 𝑤̃ = (𝑤̃1, 𝑤̃2)
𝑇 ∈ 𝑋̃ × 𝑌̃, 𝑣̃ =

(𝑣̃1, 𝑣̃2)
𝑇 ∈ 𝑋̃ × 𝑌̃and the functions, the functions  

ℒ̃(𝑥̃, 𝑦̃) ≔ 𝑓(𝑐, 𝜆), 𝜙(𝑤̃, 𝑣̃) ≔ ℒ̃(𝑤̃1, 𝑣̃2) − ℒ̃(𝑣̃1, 𝑤̃2). 

For 𝑤̃1 = 𝑥̃, 𝑤̃2 = 𝑦̃, 𝑣̃1 = 𝑣̃1
∗ = 𝑥̃∗ and𝑣̃2 = 𝑣̃2

∗ = 𝑦̃∗ we have  

𝜙(𝑤̃, 𝑣̃) ≔ ℒ̃(𝑥̃, 𝑦̃∗) − ℒ̃(𝑥̃∗, 𝑦̃) 
In these variables the extraproximal approach can be represented as  

𝑣̃∗ = 𝑎𝑟𝑔 𝑚𝑖𝑛
𝑣∈𝑋̃×𝑌̃

{
1

2
‖𝑤̃ − 𝑣̃∗‖2 + 𝛾𝜙(𝑤̃, 𝑣̃∗)} 

(19) 

Let 𝑓(𝑧) be a convex function defined on a convex set Z . If 𝑧∗is a minimizer 

of function  

𝛷(𝑧) =
1

2
‖𝑧 − 𝑥‖2 + 𝛼𝑓(𝑧) 

(20) 

on Z  with fixed x , then 𝑓(𝑧) satisfies the inequality 
1

2
‖𝑧∗ − 𝑥‖2 + 𝛼𝑓(𝑧∗) ≤

1

2
‖𝑧 − 𝑥‖2 + 𝛼𝑓(𝑧) −

1

2
‖𝑧 − 𝑧∗‖2 

(21) 

If all partial derivative ofℒ̃(𝑥̃, 𝑦̃) satisfy the Lipschitz condition with positive 

constant C , then the following Lipschitz-type condition holds: 

‖[𝜙(𝑤̃ + ℎ, 𝑣̃ + 𝑔) − 𝜙(𝑤̃, 𝑣̃ + 𝑔)] − [𝜙(𝑤̃ + ℎ, 𝑣̃) − 𝜙(𝑤̃, 𝑣̃)]‖
≤ 𝐶‖ℎ‖‖𝑔‖ 

(22) 

valid for any 𝑤̃, ℎ, 𝑣̃, 𝑔 ∈ 𝑋̃ × 𝑌̃.  

The following theorem presents the convergence conditions of (17) - (18) and 

gives the estimate of its rate of convergence. 

Theorem 6. Assume that the portfolio given in Eq. (13) has a solution. The 

functionℒ̃(𝑥̃, 𝑦̃) is differentiable in 𝑥̃ and 𝑦̃, whose partial derivative with respect to  

𝑦̃satisfies the Lipschitz condition. For any 𝛿 ∈ (0,1), there exists a small-enough 0 <

𝛾0 <
1

√2𝐶
 such that, for any 0 < 𝛾 ≤ 𝛾0. Then, the sequence {𝑣̃𝑛} generated by the 

extraproximal procedure (17) - (18), monotonically converges in norm with geometric 

progression rate 𝜌 ∈ (0,1) to a portfolio 𝑣̇̃, i.e., 𝑣̃𝑛 →
𝑛→∞

 𝑣̇̃.  

Proof. See the appendix  

Corollary 7.Assume that the portfolio given in Eq. (13) has a solution. The 

functionℒ̃(𝑥̃, 𝑦̃) is differentiable in 𝑥̃ and 𝑦̃, whose partial derivative with respect to 𝑦̃ 

satisfies the Lipschitz condition. For any 𝛿 ∈ (0,1), there exists a small-enough 0 <
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𝛾0 <
1

√2𝐶
 such that, for any 0 < 𝛾 ≤ 𝛾0 . Then, we have that 𝜆𝑛 →

𝑛→∞
𝜆∗  and 

𝛼𝑛 →
𝑛→∞

𝛼∗ 

  

Figure  1: Multi-period portfolio - 

strategies c 

Figure  2: Multi-period portfolio - 

number of customers 

 

5.Numerical example 

We conclude this section by providing a numerical example to illustrate the 

practical performance of the extraproximal method in the context of mean-variance 

customer portfolio. The extraproximal method developed in Eq. (17) and Eq. (18) 

cannot be directly applied to solve the portfolio choice problem. In this section, we show 

how one can approximate the solution to such a problem solving a sequence of portfolio 

choice problems. We consider the static portfolio choice problem with a strictly concave 

utility function given by the regularized Lagrangian given byℒ(𝑐, 𝛼, 𝜆)  (see the 

appendix). We consider the problem of maximizing the expected utility E{𝛷(𝛼, 𝑐)} 

where 𝛷(⋅,⋅)has a risk aversion 
𝜉

2
. Finally, we illustrate that, as 𝑛 → ∞, the sequence 

{𝑣̃𝑛} converges to the optimal solution𝑣̇̃ of the portfolio choice problem described in 

Eq. (17) and Eq. (18). 

The resulting multi-period portfolio (see Figure 1 and Figure 2) generated by the 

recurrent method are given, for instance, by  

 

𝑑𝑖|𝑘
∗ (𝑛 = 2) =

[
 
 
 
 
 
0.3387 0.3375 0.3238
0.3353 0.3350 0.3296
0.3402 0.3400 0.3198
0.3358 0.3358 0.3284
0.3385 0.3388 0.3226
0.3407 0.3408 0.3185]

 
 
 
 
 

𝛼𝑖|𝑘
∗ (𝑛 = 2) =

[
 
 
 
 
 
100.0000 99.1434 86.7730
100.0000 100.0000 95.4821
100.0000 100.0000 81.5175
99.9876 99.9175 93.4628
99.6989 99.9570 85.3000
100.0000 100.0000 79.6686]
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𝑑𝑖|𝑘
∗ (𝑛 = 7) =

[
 
 
 
 
 
0.3530 0.3458 0.3012
0.3433 0.3415 0.3152
0.3534 0.3520 0.2946
0.3445 0.3440 0.3115
0.3496 0.3514 0.2991
0.3532 0.3537 0.2931]

 
 
 
 
 

𝛼𝑖|𝑘
∗ (𝑛 = 7) =

[
 
 
 
 
 
100.0000 95.0994 45.5780
100.0000 100.0000 76.7207
100.0000 100.0000 32.6517
99.9721 99.5537 68.1221
98.2687 99.7829 41.5909
100.0000 100.0000 28.8877]

 
 
 
 
 

 

 

𝑑𝑖|𝑘
∗ (𝑛 = 15) =

[
 
 
 
 
 
0.3593 0.3434 0.2973
0.3512 0.3469 0.3019
0.3554 0.3521 0.2925
0.3503 0.3492 0.3005
0.3500 0.3540 0.2960
0.3538 0.3550 0.2912]

 
 
 
 
 

𝛼𝑖|𝑘
∗ (𝑛 = 15) =

[
 
 
 
 
 
100.0000 89.3542 17.7208
100.0000 100.0000 55.6880
100.0000 100.0000 8.3732
100.0000 99.1186 42.9569
96.2191 99.6327 14.4388
100.0000 100.0000 6.3474 ]

 
 
 
 
 

  

 

6.Conclusion and future work 

 
This paper developed a solution approach for the multi-period mean-variance 

customer constrained Markowitz’s portfolio optimization problem based-on the 

extraproximal method which maximize the final wealth while minimize the risk and 

determine the exit time in finite discrete time, ergodic and controllable Markov chains 

for a finite time horizon. The method simplifies the mathematical analysis of the 

Markowitz model and highlights it economic structure. We showed that multi-period 

mean-variance customer optimal portfolio can be decomposed in terms of coupled 

nonlinear programming problems implementing the Lagrange principle, each having a 

clear economic interpretation. The extraproximal method is two-step iterated procedure 

where a) the first step consists of a “prediction” which calculate the preliminary position 

approximation to the equilibrium point, and b) the second step is designed to find a “ 

basic adjustment” of the previous prediction of the portfolio. We also presented the 

convergence proof of the method for the multi-period portfolio. We provided conditions 

for the existence of a unique solution to the portfolio problem by employing a 

regularized Lagrange function. We concluded this paper by providing a numerical 

example to show the practical performance of the extraproximal method in the context 

of multi-period mean-variance customer portfolio. Future research aims at incorporating 

in the model the corresponding multi-period mean-variance frontiers, the impact of 

taking transitions costs into account and the consideration of a penalty approach on the 

implied Markowitz model. 

 

 

 

 

 

 



 

 

 

 

 

 
Multiperiod Mean-Variance Customer Constrained Portfolio Optimization for Finite 

Discrete-Time Markov Chains 
 

53 

 

 

 

Appendix. 

Proof of Theorem 6 

Proof.1) Taking in (21) 𝛼 = 𝛾 

and𝑧 = 𝑤̃, 𝑥 = 𝑣̃𝑛, 𝑧
∗ = 𝑣𝑛𝑓(𝑧) = 𝜙(𝑤̃, 𝑣̃𝑛), 𝑓(𝑧

∗) = 𝜙(𝑣𝑛, 𝑣̃𝑛)we obtain  
1

2
‖𝑣𝑛 − 𝑣̃𝑛‖

2 + 𝛾𝜙(𝑣𝑛, 𝑣̃𝑛)

≤
1

2
‖𝑤̃ − 𝑣̃𝑛‖

2 + 𝛾𝜙(𝑤̃, 𝑣̃𝑛) −
1

2
‖𝑤̃ − 𝑣𝑛‖

2 

(23) 

Again putting in (21) 𝛼 = 𝛾 and 
𝑧 = 𝑤̃, 𝑥 = 𝑣̃𝑛, 𝑧

∗ = 𝑣̃𝑛+1𝑓(𝑧) = 𝜙(𝑤̃, 𝑣𝑛), 𝑓(𝑧
∗) = 𝜙(𝑣̃𝑛+1, 𝑣𝑛) 

we get 
1

2
‖𝑣̃𝑛+1 − 𝑣̃𝑛‖

2 + 𝛾𝜙(𝑣̃𝑛+1, 𝑣𝑛)

≤
1

2
‖𝑤̃ − 𝑣̃𝑛‖

2 + 𝛾𝜙(𝑤̃, 𝑣𝑛) −
1

2
‖𝑤̃ − 𝑣̃𝑛+1‖

2 

(24) 

Selecting 𝑤̃ = 𝑣̃𝑛+1 in (23) and 𝑤̃ = 𝑣𝑛 in (24) we obtain 
1

2
‖𝑣̂𝑛 − 𝑣̃𝑛‖

2 + 𝛾𝜙(𝑣𝑛, 𝑣̃𝑛)

≤
1

2
‖𝑣̃𝑛+1 − 𝑣̃𝑛‖

2 + 𝛾𝜙(𝑣̃𝑛+1, 𝑣̃𝑛) −
1

2
‖𝑣̃𝑛+1 − 𝑣𝑛‖

2 

(25) 

1

2
‖𝑣̃𝑛+1 − 𝑣̃𝑛‖

2 + 𝛾𝜙(𝑣̃𝑛+1, 𝑣𝑛)

≤
1

2
‖𝑣𝑛 − 𝑣̃𝑛‖

2 + 𝛾𝜙(𝑣𝑛, 𝑣𝑛) −
1

2
‖𝑣𝑛 − 𝑣̃𝑛+1‖

2 

(26) 

Adding (25) with (26) and using (22) for 
𝑤̃ + ℎ = 𝑣̃𝑛+1, 𝑤̃ = 𝑣𝑛, 𝑣̃ + 𝑔 = 𝑣̃𝑛, 𝑣̃ = 𝑣𝑛, ℎ = 𝑣̃𝑛+1 − 𝑣𝑛, 𝑔 = 𝑣̃𝑛 − 𝑣𝑛 

we finally conclude 

‖𝑣̃𝑛+1 − 𝑣𝑛‖
2 ≤ 𝛾𝜙(𝑣̃𝑛+1, 𝑣̃𝑛) − 𝜙(𝑣𝑛, 𝑣̃𝑛)] − 𝛾𝜙(𝑣̃𝑛+1, 𝑣𝑛) − 𝜙(𝑣𝑛, 𝑣𝑛)] ≤

𝛾𝐶‖𝑣̃𝑛+1 − 𝑣𝑛‖‖𝑣̃𝑛 − 𝑣𝑛‖which implies 

‖𝑣̃𝑛+1 − 𝑣𝑛‖ ≤ 𝛾𝐶‖𝑣̃𝑛 − 𝑣𝑛‖ (27) 

2) Now, taking 𝑤̃ = 𝑣̃𝑛+1 in (23) and 𝑤̃ = 𝑣̃∗ in (24) we get 
1

2
‖𝑣̂𝑛 − 𝑣̃𝑛‖

2 + 𝛾𝜙(𝑣𝑛, 𝑣̃𝑛) ≤
1

2
‖𝑣̃𝑛+1 − 𝑣̃𝑛‖

2 + 𝛾𝜙(𝑣̃𝑛+1, 𝑣̃𝑛) −
1

2
‖𝑣̃𝑛+1 − 𝑣𝑛‖

2 

1

2
‖𝑣̃𝑛+1 − 𝑣̃𝑛‖

2 + 𝛾𝜙(𝑣̃𝑛+1, 𝑣𝑛) ≤
1

2
‖𝑣̃∗ − 𝑣̃𝑛‖

2 + 𝛾𝜙(𝑣̃∗, 𝑣𝑛) −
1

2
‖𝑣̃∗ − 𝑣̃𝑛+1‖

2 

Adding these two inequalities and multiplying by two yields 

‖𝑣̃∗ − 𝑣𝑛+1‖
2 + ‖𝑣̃𝑛+1 − 𝑣𝑛‖

2 + ‖𝑣̂𝑛 − 𝑣̃𝑛‖
2 − 2𝛾𝜙(𝑣̃∗, 𝑣𝑛) + 2𝛾𝜙(𝑣̃𝑛+1, 𝑣𝑛)

+ 𝜙(𝑣𝑛, 𝑣̃𝑛) − 𝜙(𝑣̃𝑛+1, 𝑣̃𝑛)] ≤ ‖𝑣̃
∗ − 𝑣̃𝑛‖

2 
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Adding and subtracting the term   (𝑣𝑛, 𝑣𝑛) we have 

‖𝑣̃∗ − 𝑣̃𝑛+1‖
2 + ‖𝑣̃𝑛+1 − 𝑣𝑛‖

2 + ‖𝑣̂𝑛 − 𝑣̃𝑛‖
2 + 2𝛾[𝜙(𝑣𝑛, 𝑣𝑛) − 𝜙(𝑣̃

∗, 𝑣𝑛)]
+ 2𝛾[𝜙(𝑣̃𝑛+1, 𝑣𝑛) −𝜙(𝑣𝑛, 𝑣𝑛) + 𝜙(𝑣𝑛, 𝑣̃𝑛) − 𝜙(𝑣̃𝑛+1, 𝑣̃𝑛)]
≤ ‖𝑣̃∗ − 𝑣̃𝑛‖

2 

Using (22) with 𝑤̃ + ℎ = 𝑣̃𝑛+1 , 𝑤̃ = 𝑣𝑛 , 𝑣̃ + 𝑘 = 𝑣̃𝑛  and 𝑣̃ = 𝑣𝑛  we have ℎ =
𝑣̃𝑛+1 − 𝑣𝑛 and k = 𝑣̃𝑛 − 𝑣𝑛, and the inequality above becomes 

‖𝑣̃∗ − 𝑣̃𝑛+1‖
2 + ‖𝑣̃𝑛+1 − 𝑣𝑛‖

2 + ‖𝑣̂𝑛 − 𝑣̃𝑛‖
2 + 2𝛾[𝜙(𝑣𝑛, 𝑣𝑛) − 𝜙(𝑣̃

∗, 𝑣𝑛)]
− 2𝛾𝐶‖𝑣̃𝑛+1 − 𝑣𝑛‖‖𝑣̃𝑛 − 𝑣𝑛‖ ≤ ‖𝑣̃

∗ − 𝑣̃𝑛‖
2. 

Applying (27) to the last term in the left-hand side and in view of the strict convexity 

property of  𝜙 given by 𝜙(𝑣𝑛, 𝑣𝑛) − 𝜙(𝑣̃
∗, 𝑣𝑛) ≥ 𝛿‖𝑣𝑛 − 𝑣̃

∗‖2we get 

‖𝑣̃∗ − 𝑣̃𝑛+1‖
2 + ‖𝑣̃𝑛+1 − 𝑣𝑛‖

2 + 2𝛾𝛿‖𝑣̂𝑛 − 𝑣̃
∗‖2 + (1 − 2𝛾2𝐶2)‖𝑣̃𝑛 − 𝑣𝑛‖

2

≤ ‖𝑣̃∗ − 𝑣̃𝑛‖
2 

Applying the identity 2⟨𝑎 − 𝑐, 𝑐 − 𝑏⟩ = ‖𝑎 − 𝑏‖2 − ‖𝑎 − 𝑐‖2 − ‖𝑐 − 𝑏‖2  with 𝑎 =
𝑣𝑛, 𝑏 = 𝑣̃∗ and 𝑐 = 𝑣̃𝑛, to the left-hand side of the last inequality we have 

‖𝑣̃∗ − 𝑣̃𝑛+1‖
2 + ‖𝑣̃𝑛+1 − 𝑣𝑛‖

2 + (1 − 2𝛾2𝐶2)‖𝑣̃𝑛 − 𝑣𝑛‖
2 + 2𝛾𝛿[2⟨𝑣𝑛 − 𝑣̃𝑛 , 𝑣̃𝑛

− 𝑣̃∗⟩ + ‖𝑣̃𝑛 − 𝑣𝑛‖
2 + ‖𝑣̃𝑛 − 𝑣̃

∗‖2

= ‖𝑣̃∗ − 𝑣̃𝑛+1‖
2 + ‖𝑣̃𝑛+1 − 𝑣𝑛‖

2 + (1 + 2𝛾𝛿 − 2𝛾2𝐶2)‖𝑣̃𝑛 − 𝑣𝑛‖
2

+ 4𝛾𝛿⟨𝑣𝑛 − 𝑣̃𝑛, 𝑣̃𝑛 − 𝑣̃
∗⟩ + 2𝛾𝛿‖𝑣̃𝑛 − 𝑣̃

∗‖2 ≤ ‖𝑣̃∗ − 𝑣̃𝑛‖
2 

Defining 𝑑 = 1 + 2𝛾𝛿 − 2𝛾2𝐶2 and completing the square form of the third and fourth 

terms yields 

‖𝑣̃∗ − 𝑣̃𝑛+1‖
2 + ‖𝑣̃𝑛+1 − 𝑣𝑛‖

2 + 𝑑‖𝑣̃𝑛 − 𝑣𝑛‖
2 + 4𝛾𝛿⟨𝑣𝑛 − 𝑣̃𝑛, 𝑣̃𝑛 − 𝑣̃

∗⟩

+
(2𝛾𝛿)2

𝑑
‖𝑣̃𝑛 − 𝑣̃

∗‖2 −
(2𝛾𝛿)2

𝑑
‖𝑣̃𝑛 − 𝑣̃

∗‖2 + 2𝛾𝛿‖𝑣̃𝑛 − 𝑣̃
∗‖2

≤ ‖𝑣̃∗ − 𝑣̃𝑛‖
2 

and 𝑐‖𝑣̃∗ − 𝑣̃𝑛+1‖
2 + ‖𝑣̃𝑛+1 − 𝑣𝑛‖

2 + ‖√𝑑(𝑣̃𝑛 − 𝑣𝑛) +
2𝛾𝛿

√𝑑
(𝑣̃𝑛 − 𝑣̃

∗)‖
2
≤

(1 − 2𝛾𝛿 +
(2𝛾𝛿)2

𝑑
) ‖𝑣̃∗ − 𝑣̃𝑛‖

2 

finally implying ‖𝑣̃∗ − 𝑣̃𝑛+1‖
2 ≤ 𝜌‖𝑣̃∗ − 𝑣̃𝑛‖

2 ≤ 𝜌𝑛+1‖𝑣̃∗ − 𝑣̃0‖
2 →
𝑛→∞

0with  𝜌 =

1 − 2𝛾𝛿 +
(2𝛾𝛿)2

𝑑
∈ (0,1). The Theorem is proven.  
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